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Abstract: Electric power quality is ability of the system to deliver electric power service in high quality so that the end use 

equipment will operate within its design specifications. Introducing power generation using renewable energy can increase 

regulations and need for reserves due to its natural intermittency. The impact of variables in distributed generation may range 

from negligible to significant depending on the level of penetration. Therefore, monitoring power quality accurately can re­

duce challenges occur in modem grid integration. This means, more reliable and accurate methods are needed to estimate 

phasors in the presence of signal distortion. This paper introduces a new phasor estimation method based on unscented Kal­

man filter (UKF). Several computer simulated test results are presented. The initial parameters for the method were chosen 

carefully using an establish parameter estimation method, least square. And it is concluded that the proposed algorithm has 

low computational demand and can track amplitude, frequency and dc component of distorted signals which makes it a 

promising method in the next generation of ph as or estimation technique. 
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1 Introduction 

Modem digital relaying techniques for protection of power sys­
tem devices are mostly based on phasor estimators. During a 
system event (e.g. fault), the power system signals are distorted 
and contain some or all of the following components: fundamen­
tal frequency, harmonic distortion and decaying dc components 
[1]. Several techniques have been proposed including least-error 
squares [2], fast Fourier transform [3], Kalman filter [4] and 
Newton type algorithm [5]-[6]. 

One of the most famous methods is extended Kalman filter 
(EKF) [11]-[13]. In EKF, Kalman filter method can be used by li­
nearizing nonlinear model so that Kalman filter method can be ap­
plied[II]. The drawbacks ofEKF :full on its linearization procedures 
[11]: when the asswnptions of locallinearity are violated, lineariza­
tion can produce an unstable filter. Moreover, the linearization pro­
cedure uses jacobian matrices which often leads to significant im­
plementation difficulties and requiring longer execution times, 
which the algorithm unsuitable for real-time applications. 

This paper proposed a new digital signal processing algorithm 
for the phasor estimation (fundamental amplitude, frequency) in­
cluding the de component using Unscented Kalman Filter (UKF). 
This method is based on Unscented Transfonnation (UT) theory 
[12]. UKF does not linearize the nonlinear model equations. This 
method uses a statistical distribution of the state and propagates it 
through nonlinear equations. 

In this paper, several computer simulations are carried out to 
analyze performance of the proposed method for amplitude, :lIe-

·Corresponding author (email: rrhappy.novanda@postgrad.manchester.ac.uk) 

978-1-4244-9621-11111$26.00 ©2011 IEEE 
2438 

quency and de components estimation. 

2 Methodology 

A. Unscented transformation 
The Unscented Transfonnation (UT) is a method developed with 
an idea that it is easier to approximate Gaussian distribution than 
nonlinear function [11]. In UT, a set of sigma points with mean 
x and covariance P xx are deterministically selected and propa­
gated through a nonlinear transformation to obtain new mean 
y and covariance Pyy [11]-[12]. The sigma points can be ob­

tained using the following formula. 

Xo = x (1) 

Xi = �+U(n+A)Pxx ) i (2) 

Xi+n = �-U(n+A)PXX ) i (3) 

where ( � (n + A) P xx ) i IS the ith column of matrix 

�(n + A)P xx and A = a
2 (n + K) -n .  Parameter a is sug­

gested to be between 104 and 1.0 [15] and value of parameter K 
is 3-n or 0 .  

The sigma points are then propagated through the function 
below. 
'Yi = f(xJ, where i = 0,I,oo.,2n (4) 

The next step is calculating mean and covariance of the 
propagated points given by: 
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i=O 
2n _ _  

PY.Y = �)f-;C[(Yi -y)(Yi -yf] 
;=0 

The weights w;m and W;C are defined below: 

W
m = _A_ 

o n+A 

A Wac =--+(I-a2 + p) 
(n+A) 

wm =WC = I 
I I 2(n+A) 

B. Unscented Kalman filter 

(5) 

(6) 

(7) 

(8) 

(9) 

UKF is an algorithm which can solve nonlinear systems in the 
following fonn: 

Xk+l = f(xk) + qk 
Y k+l = h(xk+1) + rk+l 

(10) 
(II) 

where x is a discrete state vector, Y is discrete measurement vector, 

q and r are the system and measurement Gaussian noises with 
zero mean and covariance matrices Q and R, respectively. 

There are three stages in the UKF method [14][15]: 

1. Sigma points calculation 
In the beginning, an initial state vector XQ, initial covariance Po, 

process noise covariance Q and measurement-noise covariance R, 
are defined. These values can be defined in advance based on a 
priori knowledge of the system. 

In this stage, sets of 2n+ 1 sigma points are created based on 
previous state with following fonnula: 

Xk•1 = [Xk•1 ... Xk•1] + �(n+ A )[0 .JP: -.JP:] (12) 

2. Kahnan filter state prediction 

Next, sigma points in the first stage are propagated through 

function below: 

(13) 

The following step is computing the predicted state mean 

vector Xklk-l, and predicted covariance matrix Pk1k-1: 
_ 2n 
Xklk-l = L w;mX;,klk_l 

;=0 
2n _ _ 

Pk1k-1 = L W;c [(X;,klk-l -Xklk-l )(X;,klk-l -Xklk_l)T] + Q 
;=0 

3. Kalman Filter state correction 

(14) 

(15) 

In the last stage, the sigma points related to the predicted 

state mean vector and covariance matrix are calculated with the 
following fonnula: 
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(16) 

Then, the sigma points are propagated through measure­
ment-update function: 

Y klk-l = h(Xklk_l) (17) 

The following step is calculating propagated points: 
_ 2n 
Y klk-l = L w;my i,klk-l i�O 

(18) 

Then, we can obtain the measurement covariance matrix P Y.Y 
and cross-covariance of the state and measurement P xy : 

20 _ _ 
PY.Y = LW;C[(Yi,klk_l -Yklk-l)(Yi,klk-l -Yklk_l)T]+R 

� - -
P xy = L w;c [(Xi,klk-l -Xklk-l)( Y i,klk-l -Y klk-l f] 

;=0 

(19) 

(20) 

Finally, we can compute Kahnan gain, the state mean and 
covariance below: 

Kk = P xyp;;,l 

xk = Xk1k-1 + Kk (y k -Y klk-l) 
Pk = Pk1k-1 -KkP y'yK� 

3 Algorithm testing 

(21) 

(22) 

(23) 

The UKF algorithm is tested using computer-simulated data records. 

The signal used dwing the test is defined as: 

k 
u(t) = U DC + LUh sin ( hlUt + IJ'h )+�(t) h�l 

(23) 

where u(t) is an instantaneous value (voltage or cwrent) at time t, Uoc is 

the magnitude of de voltage, k is the highest order of the hannonic pre­

sented in the signal, Uh is the magnitude of hth hannonic, lU = 27ifis the 

fimdamental angular velocity where fis fimdamental :frequency, f/Jh the 

phase angle of hth hannonic and IJ.t) is a zero mean random noise. 

A. Static Test 
The following signal model was used dwing static test: 

u(t ) = O. 5+cos ( wt+30)+ . . .  

. .  + 0. 3 cos ( 3lUt+90)+ 0. 2cos ( SlUt + 150) (24) 

where the:fundamental:frequency used dwing the test was 50 Hz. 
Att=O.3s, Uocdisturbancewas introduced to the signa1. Its value is 

changed from 0. 5 to 0. 8 p.u and the other values were maintained the 

same. The input signal is presented in Fig. 1. 
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Figure 1 Input signal for static test 

Fig. 2 shows the amplitude of voltage signal and the dc vol­
tage. It is shown that the UKF can track and separate voltage 
signal to dc component with very short convergence time. The 
estimated frequency is illustrated in the Fig. 3. It is revealed that 
this method also can track frequency precisely. 

B. Decaying dc test 
The following signal model was used during dynamic test 

u (t ) = 0.5+cos ( ())/ + 30) + .. 

.. + O.3cos ( 30Jt + 90) + 0.2 cos ( 50Jt + 150) (25) 
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Figure 2 Estimated amplitude of fundamental component and de component 
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Figure 3 Estimated frequency. 

During the test, signal parameters are dynamically changed. 
Several disturbances were introduced to the signal at t = O.3s. The 
frequency of the signal was changed from 50Hz to 
f= 50 + 2sin(4 JZt-0.8;r) + 2(t-0.2)Hz. Amplitude of the signal 
was changed from 1.0 p.u. to 1.5 p.u. and the dc component of 
the signal was changed from 0.5 p.u. to UDC= 0.8e.{).5t. Input sig­
n a l  i s  i l l u s t r a t e d  i n  F i g .  4 .  

The estimated amplitude and de component are presented in 
Fig. 5. It is shown that UKF method can successfully tracked 
amplitude and de component of the signal with highest error less 
than 1 O-� excluding the convergence period . 
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Figure 4 Input signal for decaying dc test 
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Figure 5 Estimated amplitude of fundamenlal component and dc component. 

The estimated frequency using UKF is presented in Fig. 6. 
The algorithm convergence properties are determined by initial 

covariance. Faster convergence period can be obtained by reduc­
ing measurement noise covariance and vice versa. As recognized, 
Fig. 6 shows that UKF method can track frequency precisely. 

4 Conclusion 

In this paper, a new phasor estimation method based on Un­

scented Kahnan Filter is presented. Various static and dynamic 

simulations have been carried out to analyze its perfonnance for 
frequency, amplitude and dc component tracking. The results of 
simulations show that UKF obtained high estimation accuracy 
under nonnal and noisy conditions. 
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Figure 6 Estimated frequency. 
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Through the extensive algorithm testing, it is shown that this 
method can be effectively applied as a reliable tool for phasor 
estimator devices. This method is originally developed for a sin­
gle phase systems. However, multiphase approach can also be 

applied. The authors are now extensively using this method for 
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processing real data recorded from several wind farms in the UK 
and other European countries. 
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